Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A REVIEW OF PHOSPHORUS AND SEDIMENT RELEASE FROM IRISH TILLAGE SOILS, THE METHODS USED TO QUANTIFY LOSSES AND THE CURRENT STATE OF MITIGATION PRACTICE

J.T. Regan, O. Fenton and M.G. Healy
Biology and Environment: Proceedings of the Royal Irish Academy
Vol. 112B, No. 1 (March 2012), pp. 157-183
Published by: Royal Irish Academy
Stable URL: http://www.jstor.org/stable/23188069
Page Count: 27
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A REVIEW OF PHOSPHORUS AND SEDIMENT RELEASE FROM IRISH TILLAGE SOILS, THE METHODS USED TO QUANTIFY LOSSES AND THE CURRENT STATE OF MITIGATION PRACTICE
Preview not available

Abstract

Throughout the European Union (EU), agricultural soils with high phosphorus (P) status due to surplus fertiliser input have been identified as a landscape pressure impacting on water quality. In Republic of Ireland, approximately 80% of agricultural land is devoted to grass, 11% to rough grazing, and 9% to arable cereal and crop production. Consequently, the majority of erosion research has focused on quantifying nutrient and sediment losses from grassland. Tillage soils are, however, more susceptible to erosion than grassland soils and, in general, have higher levels of soil P. This paper reviews the current state of research and the regulatory regime relating to diffuse P and sediment loss for tillage soils. It identifies the key threats to soil quality associated with cultivated soils, and proposes the targeting and remediation of critical source areas for effective mitigation of P losses from tillage soils. A multiscaled approach is recommended, in which catchment and field-scale monitoring is complemented with controlled laboratory and small plot-scale rainfall simulation experiments to identify areas where P loss and soil erosion are at critical levels and may pose a threat to water quality. Catchment scale research will help to link critical source areas of sediment and P loss with hydrological pathways to surface waters in the catchment area. These areas can then be targeted for remediation in the river basin management plans.

Page Thumbnails

  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169
  • Thumbnail: Page 
170
    170
  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173
  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183