Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Transcending scale dependence in identifying habitat with resource selection functions

Nicholas J. DeCesare, Mark Hebblewhite, Fiona Schmiegelow, David Hervieux, Gregory J. McDermid, Lalenia Neufeld, Mark Bradley, Jesse Whittington, Kirby G. Smith, Luigi E. Morgantini, Matthew Wheatley and Marco Musiani
Ecological Applications
Vol. 22, No. 4 (June 2012), pp. 1068-1083
Published by: Wiley
Stable URL: http://www.jstor.org/stable/23213945
Page Count: 16
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Transcending scale dependence in identifying habitat with resource selection functions
Preview not available

Abstract

Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.

Page Thumbnails

  • Thumbnail: Page 
1068
    1068
  • Thumbnail: Page 
1069
    1069
  • Thumbnail: Page 
1070
    1070
  • Thumbnail: Page 
1071
    1071
  • Thumbnail: Page 
1072
    1072
  • Thumbnail: Page 
1073
    1073
  • Thumbnail: Page 
1074
    1074
  • Thumbnail: Page 
1075
    1075
  • Thumbnail: Page 
1076
    1076
  • Thumbnail: Page 
1077
    1077
  • Thumbnail: Page 
1078
    1078
  • Thumbnail: Page 
1079
    1079
  • Thumbnail: Page 
1080
    1080
  • Thumbnail: Page 
1081
    1081
  • Thumbnail: Page 
1082
    1082
  • Thumbnail: Page 
1083
    1083