Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Population Frequencies of Species and the Estimation of Population Parameters

I. J. Good
Biometrika
Vol. 40, No. 3/4 (Dec., 1953), pp. 237-264
Published by: Oxford University Press on behalf of Biometrika Trust
DOI: 10.2307/2333344
Stable URL: http://www.jstor.org/stable/2333344
Page Count: 28
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Population Frequencies of Species and the Estimation of Population Parameters
Preview not available

Abstract

A random sample is drawn from a population of animals of various species. (The theory may also be applied to studies of literary vocabulary, for example.) If a particular species is represented r times in the sample of size N, then r/N is not a good estimate of the population frequency, p, when r is small. Methods are given for estimating p, assuming virtually nothing about the underlying population. The estimates are expressed in terms of smoothed values of the numbers nr (r = 1, 2, 3...), where nr is the number of distinct species that are each represented r times in the sample. (nr may be described as `the frequency of the frequency r'.) Turing is acknowledged for the most interesting formula in this part of the work. An estimate of the proportion of the population represented by the species occurring in the sample is an immediate corollary. Estimates are made of measures of heterogeneity of the population, including Yule's characteristic' and Shannon's entropy'. Methods are then discussed that do depend on assumptions about the underlying population. It is here that most work has been done by other writers. It is pointed out that a hypothesis can give a good fit to the numbers nr but can give quite the wrong value for Yule's characteristic. An example of this is Fisher's fit to some data of Williams's on Macrolepidoptera.

Page Thumbnails

  • Thumbnail: Page 
[237]
    [237]
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264