Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Generalized Monte Carlo Significance Tests

Julian Besag and Peter Clifford
Biometrika
Vol. 76, No. 4 (Dec., 1989), pp. 633-642
Published by: Oxford University Press on behalf of Biometrika Trust
DOI: 10.2307/2336623
Stable URL: http://www.jstor.org/stable/2336623
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Generalized Monte Carlo Significance Tests
Preview not available

Abstract

Simple Monte Carlo significance testing has many applications, particularly in the preliminary analysis of spatial data. The method requires the value of the test statistic to be ranked among a random sample of values generated according to the null hypothesis. However, there are situations in which a sample of values can only be conveniently generated using a Markov chain, initiated by the observed data, so that independence is violated. This paper describes two methods that overcome the problem of dependence and allow exact tests to be carried out. The methods are applied to the Rasch model, to the finite lattice Ising model and to the testing of association between spatial processes. Power is discussed in a simple case.

Page Thumbnails

  • Thumbnail: Page 
[633]
    [633]
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642