If you need an accessible version of this item please contact JSTOR User Support

Characterizing the Effect of Matching Using Linear Propensity Score Methods with Normal Distributions

Donald B. Rubin and Neal Thomas
Biometrika
Vol. 79, No. 4 (Dec., 1992), pp. 797-809
Published by: Oxford University Press on behalf of Biometrika Trust
DOI: 10.2307/2337235
Stable URL: http://www.jstor.org/stable/2337235
Page Count: 13
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Characterizing the Effect of Matching Using Linear Propensity Score Methods with Normal Distributions
Preview not available

Abstract

Matched sampling is a standard technique for controlling bias in observational studies due to specific covariates. Since Rosenbaum & Rubin (1983), multivariate matching methods based on estimated propensity scores have been used with increasing frequency in medical, educational, and sociological applications. We obtain analytic expressions for the effect of matching using linear propensity score methods with normal distributions. These expressions cover cases where the propensity score is either known, or estimated using either discriminant analysis or logistic regression, as is typically done in current practice. The results show that matching using estimated propensity scores not only reduces bias along the population propensity score, but also controls variation of components orthogonal to it. Matching on estimated rather than population propensity scores can therefore lead to relatively large variance reduction, as much as a factor of two in common matching settings where close matches are possible. Approximations are given for the magnitude of this variance reduction, which can be computed using estimates obtained from the matching pools. Related expressions for bias reduction are also presented which suggest that, in difficult matching situations, the use of population scores leads to greater bias reduction than the use of estimated scores.

Page Thumbnails

  • Thumbnail: Page 
[797]
    [797]
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809