Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants

William J. Lucas, Amnon Olesinski, Richard J. Hull, James S. Haudenshield, C. Michael Deom, Roger N. Beachy and Shmuel Wolf
Planta
Vol. 190, No. 1 (1993), pp. 88-96
Published by: Springer
Stable URL: http://www.jstor.org/stable/23382151
Page Count: 9
  • More info
  • Cite this Item
Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants
Preview not available

Abstract

Transgenic tobacco (Nicotiana tabacum L.) plants expressing the 30-kDa movement protein of tobacco mosaic virus (TMV-MP) were employed to investigate the influence of a localized change in mesophyll-bundle sheath plasmodesmal size exclusion limit on photosynthetic performance and on carbon metabolism and allocation. Under conditions of saturating irradiance, tobacco plants expressing the TMV-MP were found to have higher photosynthetic CO2-response curves compared with vector control plants. However, this difference was significant only in the presence of elevated CO2 levels. Photosynthetic measurements made in the greenhouse, under endogenous growth conditions, revealed that there was little difference between TMV-MP-expressing and control tobacco plants. However, analysis of carbon metabolites within source leaves where a TMV-MP-induced increase in plasmodesmal size exclusion limit had recently taken place established that the levels of sucrose, glucose, fructose and starch were considerably elevated above those present in equivalent control leaves. Although expression of the TMV-MP did not alter total plant biomass, it reduced carbon allocation to the lower region of the stem and roots. This difference in biomass distribution was clearly evident in the lower root-to-shoot ratios for the TMV-MP transgenic plants. Microinjection (dye-coupling) studies established that the TMV-MP-associated reduction in photosynthate delivery (allocation) to the roots was not due to a direct effect on root cortical plasmodesmata. Rather, this change appeared to result from an alteration in phloem transport from young source leaves in which the TMV-MP had yet to exert its influence over plasmodesmal size exclusion limits. These results are discussed in terms of the rate-limiting steps involved in sucrose movement into the phloem.

Page Thumbnails

  • Thumbnail: Page 
[88]
    [88]
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96