Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds

Jens Tiedemann, Armin Schlereth and Klaus Müntz
Planta
Vol. 212, No. 5/6 (April 2001), pp. 728-738
Published by: Springer
Stable URL: http://www.jstor.org/stable/23386166
Page Count: 11
  • More info
  • Cite this Item
Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds
Preview not available

Abstract

The temporal and spatial distribution of cysteine proteinases (CPRs) was analyzed immunologically and by in situ hybridization to identify the CPRs involved in the initiation of storage-globulin degradation in embryonic axes and cotyledons of germinating vetch (Vicia sativa L.). At the start of germination several CPRs were found in protein bodies in which they might have been stored in the mature seeds. Cysteine proteinase 1 was predominantly found in organs like the radicle, which first start to grow during germination. Cysteine proteinase 2 was also present at the start of germination but displayed a less-specific histological pattern. Proteinase B was involved in the globulin degradation of vetch cotyledons as well. The histological pattern of CPRs followed the distribution of their corresponding mRNAs. The latter were usually detected earlier than the CPRs but the in situ hybridization signals were histologically not as restricted as the immunosignals. Proteolytic activity started in the radicle of the embryonic axis early during germination. Within 24 h after imbibition it had also spread throughout the whole shoot. At the end of germination, newly synthesized CPRs might have supplemented the early detectable CPRs in the axis. In the cotyledons, only the abaxial epidermis and the procambial strands showed proteinase localization during germination. Both CPR1 and CPR2, as well as the less common proteinase B, might have been present as stored proteinases. Three days after imbibition, proteolytic activity had proceeded from the cotyledonary epidermis towards the vascular strands deeper inside the cotyledons. The histochemical detection of the CPRs was in accordance with the previously described histological pattern of globulin mobilization in germinating vetch [Tiedemann J, et al. (2000)]. A similar link between the distribution of CPRs and globulin degradation was found in germinating seeds of Phaseolus vulgaris L. The coincidence of the histological patterns of globulin breakdown with that of the CPRs indicates that at least CPR1, CPR2 and proteinase B are responsible for bulk globulin mobilization in the seeds of the two legumes.

Page Thumbnails

  • Thumbnail: Page 
[728]
    [728]
  • Thumbnail: Page 
729
    729
  • Thumbnail: Page 
730
    730
  • Thumbnail: Page 
731
    731
  • Thumbnail: Page 
732
    732
  • Thumbnail: Page 
733
    733
  • Thumbnail: Page 
734
    734
  • Thumbnail: Page 
735
    735
  • Thumbnail: Page 
736
    736
  • Thumbnail: Page 
737
    737
  • Thumbnail: Page 
738
    738