Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Do nitric oxide donors mimic endogenous NO-related response in plants?

J. Floryszak-Wieczorek, G. Milczarek, M. Arasimowicz and A. Ciszewski
Planta
Vol. 224, No. 6 (November 2006), pp. 1363-1372
Published by: Springer
Stable URL: http://www.jstor.org/stable/23389508
Page Count: 10
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

Huge advances achieved recently in elucidating the role of NO in plants have been made possible by the application of NO donors. However, the application of NO to plants in various forms and doses should be subjected to detailed verification criteria. Not all metabolic responses induced by NO donors are reliable and reproducible in other experimental designs. The aim of the presented studies was to investigate the half-life of the most frequently applied donors (SNP, SNAP and GSNO), the rate of NO release under the influence of light and reducing agents. At a comparable donor concentration (500 μM) and under light conditions the highest rate of NO generation was found for SNAP, followed by GSNO and SNP. The measured half-life of the donor in the solution was 3 h for SNAP, 7 h for GSNO and 12 h for SNP. A temporary lack of light inhibited NO release from SNP, both in the solution and SNP-treated leaf tissue, which was measured by the electrochemical method. Also a NO, selective fluorescence indicator DAF-2DA in leaves supplied with different donors showed green fluorescence spots in the epidermal cells mainly in the light. SNP as a NO donor was the most photosensitive. The activity of PAL, which plays an important role in plant defence, was also activated by SNP in the light, not in the dark. S-nitrosothiols (SNAP and GSNO) also underwent photodegradation, although to a lesser degree than SNP. Additionally, NO generation capacity from S-nitrosothiols was shown in the presence of reducing agents, i.e. ascorbic acid and GSH, and the absence of light. The authors of this paper would like to polemicize with the commonly cited statement that "donors are compounds that spontaneously break down to release NO" and wish to point out the fact that the process of donor decomposition depends on the numerous external factors. It may be additionally stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects and monitor the amount of NO released by the donor.

Page Thumbnails

  • Thumbnail: Page 
[1363]
    [1363]
  • Thumbnail: Page 
1364
    1364
  • Thumbnail: Page 
1365
    1365
  • Thumbnail: Page 
1366
    1366
  • Thumbnail: Page 
1367
    1367
  • Thumbnail: Page 
1368
    1368
  • Thumbnail: Page 
1369
    1369
  • Thumbnail: Page 
1370
    1370
  • Thumbnail: Page 
1371
    1371
  • Thumbnail: Page 
1372
    1372