Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

The roles of specific xanthophylls in light utilization

Ljudmila Kalituho, Jennifer Rech and Peter Jahns
Planta
Vol. 225, No. 2 (January 2007), pp. 423-439
Published by: Springer
Stable URL: http://www.jstor.org/stable/23389560
Page Count: 17
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

To evaluate the role of specific xanthophylls in light utilization, wild-type and xanthophyll mutant plants (npq1, npq2, lut2, lut2npq1 and lut2npq2) from Arabidopsis thaliana were grown under three different light regimes: 30 (low light, LL), 150 (medium light, ML) and 450 (high light, HL) μmol photons m-2 s-1. We studied the pigment content, growth rate, xanthophyll cycle activity, chlorophyll fluorescence parameters and the response to photoinhibition. All genotypes differed strongly in the growth rates and the resistance against photoinhibition. In particular, replacement of lutein (Lut) by violaxanthin (Vx) in the lut2npq1 mutant did not affect the growth at non-saturating light intensities (LL and ML), but led to a pronounced reduction of growth under HL conditions, indicating an important photoprotective role of Lut. This was further supported by a much higher sensitivity of all Lut-deficient plants to photoinhibition in comparison with the wild type. In contrast, replacement of Lut by zeaxanthin (Zx) in lut2npq2 led to a pronounced reduction of growth under all light regimes, most likely related to the permanent non-photochemical dissipation of excitation energy by Zx at Vx-binding sites and the destabilization of antenna proteins by binding of Zx to Lut-binding sites. The high susceptibility of lut2npq2 to photoinhibition in comparison with npq2 further indicated that the photoprotective function of Zx is abolished in the absence of Lut. Thus, it can be concluded from our work that neither Vx nor Zx is able to fulfil the essential photoprotective function at Lut-binding sites under in vivo conditions.

Page Thumbnails

  • Thumbnail: Page 
[423]
    [423]
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439