Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Altered expression of barley proline transporter causes different growth responses in Arabidopsis

Akihiro Ueda, Weiming Shi, Takiko Shimada, Hiroshi Miyake and Tetsuko Takabe
Planta
Vol. 227, No. 2 (January 2008), pp. 277-286
Published by: Springer
Stable URL: http://www.jstor.org/stable/23389866
Page Count: 10
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

A compatible solute, proline is accumulated in various kinds of plants and microorganisms under environmental stresses. The function of proline is thought to be an osmotic regulator under water stress, and its transport into cells is mediated by a proline transporter. Here, we report the effects of expressing the barley proline transporter (HvProT) under the control of either the CaMV35S promoter (35Sp) or a root cap promoter (RCp), on Arabidopsis growth. In Arabidopsis, transformed HvProT functions in the plasma membrane, like other amino acid transporters. Reduction in biomass production was observed in aerial parts of 35Sp-HvProT plants, and it was accompanied with decreased proline accumulation in leaves. Impaired growth of 35Sp-HvProT plants was restored by exogenously adding L-proline. These results suggested that growth reduction was caused by a deficiency of endogenous proline. In 35Sp-HvProT plants, the amount of proline dehydrogenase (PDH) transcript was increased compared to wild type (WT) plants, with a consequent enhancement of the activity of PDH. On the other hand, the transgenic RCp-HvProT plants accumulated 2- to 3-fold more proline in the root tip region compared to WT, and root elongation was enhanced at the same time. Thus, different physiological responses were caused by the altered location in accumulation of proline using two different promoters for heterologous expression of HvProT. These results indicate the importance of proline distribution at the tissue level during vegetative development.

Page Thumbnails

  • Thumbnail: Page 
[277]
    [277]
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286