Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Journal Article

A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia

Alexander Lane, Astrid Boecklemann, Grant N. Woronuk, Lukman Sarker and Soheil S. Mahmoud
Planta
Vol. 231, No. 4 (March 2010), pp. 835-845
Published by: Springer
Stable URL: http://www.jstor.org/stable/23391106
Page Count: 11
  • More info
  • Add to My Lists
  • Cite this Item
Preview not available
Preview not available

Abstract

We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D-xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)—the gene responsible for the production of linalool, a major constituent of lavender essential oil—was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

Page Thumbnails

  • Thumbnail: Page 
[835]
    [835]
  • Thumbnail: Page 
836
    836
  • Thumbnail: Page 
837
    837
  • Thumbnail: Page 
838
    838
  • Thumbnail: Page 
839
    839
  • Thumbnail: Page 
840
    840
  • Thumbnail: Page 
841
    841
  • Thumbnail: Page 
842
    842
  • Thumbnail: Page 
843
    843
  • Thumbnail: Page 
844
    844
  • Thumbnail: Page 
845
    845