Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-L-isoleucine in wounded leaves

Walter P. Suza, Martha L. Rowe, Mats Hamberg and Paul E. Staswick
Planta
Vol. 231, No. 3 (February 2010), pp. 717-728
Published by: Springer
Stable URL: http://www.jstor.org/stable/23391543
Page Count: 12
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

Jasmonoyl-L-isoleucine (JA-Ile) is a key jasmonate signal that probably functions in all plant species. The JASMONATE RESISTANT 1 (JAR1) enzyme synthesizes JA-Ile in Arabidopsis [Arabidopsis thaliana (L.) Heynh.], but a similar enzyme from tomato [Solanum lycopersicum (L.)] was not previously described. Tomato SlJAR1 has 66% sequence identity with Arabidopsis JAR1 and the SlJAR1-GST fusion protein purified from Escherichia coli catalyzed the formation of JA-amino acid conjugates in vitro. Kinetic analysis showed the enzyme has a strong preference for Ile over Leu and Val and it was about 10-fold more active with (+)-7-iso-JA than with its epimer (-)-JA. Leaf wounding rapidly increased JA-Ile 50-fold to about 450 pmol g-1 FW at 30 min after wounding, while conjugates with Leu, Phe, Val and Met were only marginally increased or not detected. Nearly all of the endogenous JA-Ile was the bioactive epimer (+)-7-iso-JA-Ile and there was no evidence for its conversion to (-)-JA-Ile up to 6 h after wounding. A transgenic RNAi approach was used to suppress SlJAR1 transcript that reduced JA-Ile accumulation by 50—75%, suggesting that other JA conjugating enzymes may be present. These results show that SlJAR1 synthesizes the bioactive conjugate (+)-7-iso-JA-Ile and this is the predominant isomer accumulated in wounded tomato leaves.

Page Thumbnails

  • Thumbnail: Page 
[717]
    [717]
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724
  • Thumbnail: Page 
725
    725
  • Thumbnail: Page 
726
    726
  • Thumbnail: Page 
727
    727
  • Thumbnail: Page 
728
    728