Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Nitric Oxide: An Endogenous Modulator of Leukocyte Adhesion

P. Kubes, M. Suzuki and D. N. Granger
Proceedings of the National Academy of Sciences of the United States of America
Vol. 88, No. 11 (Jun. 1, 1991), pp. 4651-4655
Stable URL: http://www.jstor.org/stable/2357110
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Nitric Oxide: An Endogenous Modulator of Leukocyte Adhesion
Preview not available

Abstract

The objective of this study was to determine whether endogenous nitric oxide (NO) inhibits leukocyte adhesion to vascular endothelium. This was accomplished by superfusing a cat mesenteric preparation with inhibitors of NO production, NG-monomethyl-L-arginine (L-NMMA) or NG-nitro-L-arginine methyl ester (L-NAME), and observing single (30-μ m diameter) venules by intravital video microscopy. Thirty minutes into the superfusion period the number of adherent and emigrated leukocytes, the erythrocyte velocity, and the venular diameter were measured; venular blood flow and shear rate were calculated from the measured parameters. The contribution of the leukocyte adhesion glycoprotein CD11/CD18 was determined using the CD18-specific monoclonal antibody IB4. Both inhibitors of NO production increased leukocyte adherence more than 15-fold. Leukocyte emigration was also enhanced, whereas venular shear rate was reduced by nearly half. Antibody IB4 abolished the leukocyte adhesion induced by L-NMMA and L-NAME. Incubation of isolated cat neutrophils with L-NMMA, but not L-NAME, resulted in direct upregulation of CD11/CD18 as assessed by flow cytometry. Decrements in venular shear rate induced by partial occlusion of the superior mesenteric artery in untreated animals revealed that only a minor component of L-NAME-induced leukocyte adhesion was shear rate-dependent. The L-NAME-induced adhesion was inhibited by L-arginine but not D-arginine. These data suggest that endothelium-derived NO may be an important endogenous modulator of leukocyte adherence and that impairment of NO production results in a pattern of leukocyte adhesion and emigration that is characteristic of acute inflammation.

Page Thumbnails

  • Thumbnail: Page 
4651
    4651
  • Thumbnail: Page 
4652
    4652
  • Thumbnail: Page 
4653
    4653
  • Thumbnail: Page 
4654
    4654
  • Thumbnail: Page 
4655
    4655