Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams

Tara M. Holitzki, Richard A. Mackenzie, Tracy N. Wiegner and Karla J. McDermid
Ecological Applications
Vol. 23, No. 6 (September 2013), pp. 1367-1383
Published by: Wiley
Stable URL: http://www.jstor.org/stable/23596831
Page Count: 17
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams
Preview not available

Abstract

Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (ΣNO 3 - = NO 3 - + NO 2 - ), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5× higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.

Page Thumbnails

  • Thumbnail: Page 
1367
    1367
  • Thumbnail: Page 
1368
    1368
  • Thumbnail: Page 
1369
    1369
  • Thumbnail: Page 
1370
    1370
  • Thumbnail: Page 
1371
    1371
  • Thumbnail: Page 
1372
    1372
  • Thumbnail: Page 
1373
    1373
  • Thumbnail: Page 
1374
    1374
  • Thumbnail: Page 
1375
    1375
  • Thumbnail: Page 
1376
    1376
  • Thumbnail: Page 
1377
    1377
  • Thumbnail: Page 
1378
    1378
  • Thumbnail: Page 
1379
    1379
  • Thumbnail: Page 
1380
    1380
  • Thumbnail: Page 
1381
    1381
  • Thumbnail: Page 
1382
    1382
  • Thumbnail: Page 
1383
    1383