Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis

Andrija Finka and Pierre Goloubinoff
Cell Stress & Chaperones
Vol. 18, No. 5 (SEPTEMBER 2013), pp. 591-605
Published by: Cell Stress Society International in partnership with Springer
Stable URL: http://www.jstor.org/stable/23610200
Page Count: 15
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.

Page Thumbnails

  • Thumbnail: Page 
[591]
    [591]
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605