Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Physical Model for the Translocation and Helicase Activities of Escherichia coli Transcription Termination Protein Rho

Johannes Geiselmann, Yan Wang, Steven E. Seifried and Peter H. von Hippel
Proceedings of the National Academy of Sciences of the United States of America
Vol. 90, No. 16 (Aug. 15, 1993), pp. 7754-7758
Stable URL: http://www.jstor.org/stable/2362799
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Physical Model for the Translocation and Helicase Activities of Escherichia coli Transcription Termination Protein Rho
Preview not available

Abstract

Transcription termination protein Rho of Escherichia coli interacts with newly synthesized RNA chains and brings about their release from elongation complexes paused at specific Rho-dependent termination sites. Rho is thought to accomplish this by binding to a specific Rho "loading site" on the nascent RNA and then translocating preferentially along the transcript in a 5 '→ 3' direction. On reaching the elongation complex, Rho releases the nascent RNA by a 5' → 3' RNA·DNA helicase activity. These translocation and helicase activities are driven by the RNA-dependent ATPase activity of Rho. In this paper we propose a mechanism for these processes that is based on the structure and properties of the Rho protein. Rho is a hexamer of identical subunits that are arranged as a trimer of asymmetric dimers with D3 symmetry. The binding of ATP and RNA to Rho also reflects this pattern; the Rho hexamer carries three strong and three weak binding sites for each of these entities. The asymmetric dimers of Rho correspond to functional dimers that can undergo conformational transitions driven by ATP hydrolysis. We propose that the quaternary structure of Rho coordinates the ATP-driven RNA binding and release processes to produce a biased random walk of the Rho hexamer along the RNA, followed by RNA·DNA helicase activity and transcript release. The proposed model may have implications for other hexameric DNA·DNA, RNA·DNA, and RNA·RNA helicases that function in replication and transcription.

Page Thumbnails

  • Thumbnail: Page 
7754
    7754
  • Thumbnail: Page 
7755
    7755
  • Thumbnail: Page 
7756
    7756
  • Thumbnail: Page 
7757
    7757
  • Thumbnail: Page 
7758
    7758