Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ion Channels Induced in Lipid Bilayers by Subvirion Particles of the Nonenveloped Mammalian Reoviruses

Magdalena T. Tosteson, Max L. Nibert and Bernard N. Fields
Proceedings of the National Academy of Sciences of the United States of America
Vol. 90, No. 22 (Nov. 15, 1993), pp. 10549-10552
Stable URL: http://www.jstor.org/stable/2363264
Page Count: 4
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ion Channels Induced in Lipid Bilayers by Subvirion Particles of the Nonenveloped Mammalian Reoviruses
Preview not available

Abstract

Mechanisms by which nonenveloped viruses penetrate cell membranes as an early step in infection are not well understood. Current ideas about the mode for cytosolic penetration by nonenveloped viruses include (i) formation of a membrane-spanning pore through which viral components enter the cell and (ii) local breakdown of the cellular membrane to provide direct access of infecting virus to the cell's interior. Here we report that of the three viral particles of nonenveloped mammalian reoviruses: virions, infectious subvirion particles, and cores (the last two forms generated from intact reovirus virions by proteolysis), only the infectious subvirion particles induced the formation of anion-selective, multisized channels in planar lipid bilayers under the experimental conditions used in this study. The value for the smallest size conductance varied depending on the lipid composition of the bilayer between 90 pS (Asolectin) and 300 pS (phosphatidylethanolamine:phosphatidylserine) and was found to be voltage independent. These findings are consistent with a proposal that the proteolytically activated infectious subviral particles mediate the interaction between virus and the lipid bilayer of a cell membrane during penetration. In addition, the findings indicate that the "penetration proteins" of some enveloped and nonenveloped viruses share similarities in the way they interact with bilayers.

Page Thumbnails

  • Thumbnail: Page 
10549
    10549
  • Thumbnail: Page 
10550
    10550
  • Thumbnail: Page 
10551
    10551
  • Thumbnail: Page 
10552
    10552