Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

An Integral Membrane Protein (LMP2) Blocks Reactivation of Epstein-Barr Virus from Latency Following Surface Immunoglobulin Crosslinking

Cheryl L. Miller, Jennifer H. Lee, Elliott Kieff and Richard Longnecker
Proceedings of the National Academy of Sciences of the United States of America
Vol. 91, No. 2 (Jan. 18, 1994), pp. 772-776
Stable URL: http://www.jstor.org/stable/2363966
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
An Integral Membrane Protein (LMP2) Blocks Reactivation of Epstein-Barr Virus from Latency Following Surface Immunoglobulin Crosslinking
Preview not available

Abstract

The role of latent membrane protein 2 (LMP2) in Epstein-Barr virus (EBV) infection was evaluated by using latently infected primary B lymphocytes that had been growth transformed by wild-type or specifically mutated EBV recombinants. LMP2 null mutant recombinant EBV-infected cells were similar to normal B lymphocytes in their rapid increase in intracellular free calcium after surface immunoglobulin crosslinking. These cells also became more permissive for lytic EBV replication. In sharp contrast, wild-type control infected cells had little or no increase in intracellular free calcium or in permissivity for EBV replication. The block to surface immunoglobulin crosslinking-induced permissivity in cells expressing wild-type LMP2 could be bypassed by raising intracellular free calcium levels with an ionophore and by activating protein kinase C with phorbol 12-myristate 13-acetate. LMP2A, not LMP2B, mediates this effect on calcium mobilization. Genetic and biochemical data are consistent with these effects being due to the interaction of the LMP2A N-terminal cytoplasmic domain with B lymphocyte src family tyrosine kinases.

Page Thumbnails

  • Thumbnail: Page 
772
    772
  • Thumbnail: Page 
773
    773
  • Thumbnail: Page 
774
    774
  • Thumbnail: Page 
775
    775
  • Thumbnail: Page 
776
    776