Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Reconstitution of ATP-Dependent Aminophospholipid Translocation in Proteoliposomes

Merran E. Auland, Basil D. Roufogalis, Philippe F. Devaux and Alain Zachowski
Proceedings of the National Academy of Sciences of the United States of America
Vol. 91, No. 23 (Nov. 8, 1994), pp. 10938-10942
Stable URL: http://www.jstor.org/stable/2365506
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Reconstitution of ATP-Dependent Aminophospholipid Translocation in Proteoliposomes
Preview not available

Abstract

In addition to ion-pumping ATPases, most plasma membranes of animal cells contain a Mg2+ ATPase activity, the function of which is unknown. This enzyme, of apparent molecular mass 110 kDa, was purified from human erythrocyte membranes by a series of column chromatographic procedures after solubilization in Triton X-100. When reincorporated into artificial bilayers formed from phosphatidylcholine, it was able to transport a spin-labeled phosphatidylserine analogue from the inner to the outer membrane leaflet provided Mg2+ ATP was present in the incubation mixture. The ATP-dependent transport of the phosphatidylethanolamine analogue required the presence of an anionic phospholipid (e.g., phosphatidylinositol) in the outer membrane leaflet. In contrast the transmembrane distribution of spin-labeled phosphatidylcholine was unaffected in the same experimental conditions. This transmembrane movement of aminophospholipid analogues was inhibited by treatment of the proteoliposomes with a sulfhydryl reagent. We conclude that the Mg2+ ATPase is sufficient for the biochemical expression of the aminophospholipid translocase activity, which is responsible for the inward transport of phosphatidylserine and phosphatidylethanolamine within the erythrocyte membrane. The presence of this transport activity in many animal cell plasma membranes provides a function for the Mg2+ ATPase borne by these membranes.

Page Thumbnails

  • Thumbnail: Page 
10938
    10938
  • Thumbnail: Page 
10939
    10939
  • Thumbnail: Page 
10940
    10940
  • Thumbnail: Page 
10941
    10941
  • Thumbnail: Page 
10942
    10942