Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Angiogenesis: Role of Calcium-Mediated Signal Transduction

Elise C. Kohn, Riccardo Alessandro, Joseph Spoonster, Robert P. Wersto and Lance A. Liotta
Proceedings of the National Academy of Sciences of the United States of America
Vol. 92, No. 5 (Feb. 28, 1995), pp. 1307-1311
Stable URL: http://www.jstor.org/stable/2366771
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Angiogenesis: Role of Calcium-Mediated Signal Transduction
Preview not available

Abstract

During angiogenesis, endothelial cells react to stimulation with finely tuned signaling responses. The role of calcium-regulated signaling in angiogenesis has not been defined. This study investigated the calcium dependency of endothelial cell proliferation and invasion by using an inhibitor of ligand-stimulated calcium influx, CAI (carboxyamidotriazole). Incubation with CAI significantly inhibited proliferation of human umbilical vein endothelial cells (HU-VECs) in response to serum (IC50=1 μM) or basic fibroblast growth factor (FGF2; P2 < 0.005 at 10 μM). Statistically significant inhibition of HUVEC adhesion and motility to basement membrane proteins laminin, fibronectin, and type IV collagen was demonstrated (adhesion, P2 < 0.004-0.01; motility, P2 < 0.009-0.018). Marked inhibition of native and FGF2-induced gelatinase activity was shown by zymogram analysis and was confirmed by Northern blot analysis. CAI inhibited HUVEC tube formation on Matrigel and inhibited in vivo angiogenesis in the chicken chorioallantoic membrane assay, 67% at 20 μM and 56% at 10 μM compared with 16% for an inactive CAI analog or 9% for 0.1% dimethyl sulfoxide control. Incubation of HUVECs with CAI and/or FGF2 followed by immunoprecipitation with anti-phosphotyrosine antibody showed inhibition of FGF2-induced tyrosine phosphorylation of proteins in the range 110-150 kDa. These results suggest that calcium-regulated events are important in native and FGF2-stimulated HUVEC proliferation and invasion, perhaps through regulation of FGF2-induced phosphorylation events, and indicate a role for calcium in the regulation of angiogenesis in vivo.

Page Thumbnails

  • Thumbnail: Page 
1307
    1307
  • Thumbnail: Page 
1308
    1308
  • Thumbnail: Page 
1309
    1309
  • Thumbnail: Page 
1310
    1310
  • Thumbnail: Page 
1311
    1311