Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Definition of a Metal-Dependent/Li+-Inhibited Phosphomonoesterase Protein Family Based Upon a Conserved Three-Dimensional Core Structure

John D. York, Jay W. Ponder and Philip W. Majerus
Proceedings of the National Academy of Sciences of the United States of America
Vol. 92, No. 11 (May 23, 1995), pp. 5149-5153
Stable URL: http://www.jstor.org/stable/2367689
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Definition of a Metal-Dependent/Li+-Inhibited Phosphomonoesterase Protein Family Based Upon a Conserved Three-Dimensional Core Structure
Preview not available

Abstract

Inositol polyphosphate 1-phosphatase, inositol monophosphate phosphatase, and fructose 1,6-bisphosphatase share a sequence motif, Asp-Pro-(Ile or Leu)-Asp-(Gly or Ser)-(Thr or Ser), that has been shown by crystallographic and mutagenesis studies to bind metal ions and participate in catalysis. We compared the six α-carbon coordinates of this motif from the crystal structures of these three phosphatases and found that they are superimposable with rms deviations ranging from 0.27 to 0.60 Å. Remarkably, when these proteins were aligned by this motif a common core structure emerged, defined by five α-helices and 11 β-strands comprising 155 residues having rms deviations ranging from 1.48 to 2.66 Å. We used the superimposed structures to align the sequences within the common core, and a distant relationship was observed suggesting a common ancestor. The common core was used to align the sequences of several other proteins that share significant similarity to inositol monophosphate phosphatase, including proteins encoded by fungal qa-X and qutG, bacterial suhB and cysQ (identical to amtA), and yeast met22 (identical to hal2). Evolutionary comparison of the core sequences indicate that five distinct branches exist within this family. These proteins share metal-dependent/Li+-sensitive phosphomonoesterase activity, and each predicted tree branch exhibits unique substrate specificity. Thus, these proteins define an ancient structurally conserved family involved in diverse metabolic pathways including inositol signaling, gluconeogenesis, sulfate assimilation, and possibly quinone metabolism. Furthermore, we suggest that this protein family identifies candidate enzymes to account for both the therapeutic and toxic actions of Li+ as it is used in patients treated for manic depressive disease.

Page Thumbnails

  • Thumbnail: Page 
5149
    5149
  • Thumbnail: Page 
5150
    5150
  • Thumbnail: Page 
5151
    5151
  • Thumbnail: Page 
5152
    5152
  • Thumbnail: Page 
5153
    5153