Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Effects of elevated CO 2 concentrations on three montane grass species: III. Source leaf metabolism and whole plant carbon partitioning

R. Baxter, S.A. Bell, T.H. Sparks, T.W. Ashenden and J.F. Farrar
Journal of Experimental Botany
Vol. 46, No. 289 (AUGUST 1995), pp. 917-929
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/23694949
Page Count: 13
  • Download ($42.00)
  • Cite this Item
Effects of elevated CO
          2
          concentrations on three montane grass species: III. Source leaf metabolism and whole plant carbon partitioning
Preview not available

Abstract

Agrostis capillaris L.5, Festuca vivipara L. and Poa alpina L. were grown in outdoor open-top chambers at either ambient (340 ± 3 μmol mol-1) or elevated (680 ± 4 μmol mol-1) concentrations of atmospheric carbon dioxide (CO2) for periods from 79—189 d. Photosynthetic capacity of source leaves of plants grown at both ambient and elevated CO2 concentrations was measured at saturating light and 5% CO2. Dark respiration of leaves was measured using a liquid phase oxygen electrode with the buffer solution in equilibrium with air (21% O2, 0.034% CO2). Photosynthetic capacity of P. alpina was reduced by growth at 680 μmol mol-1 CO2 by 105 d, and that of F. vivipara was reduced at 65 d and 189 d after CO2 enrichment began, suggesting down-regulation or acclimation. Dark respiration of successive leaf blades of all three species was unaltered by growth at 680 relative to 340 μmol mol-1 CO2. In F. vivipara, leaf respiration rate was markedly lower at 189 d than at either 0 d or 65 d, irrespective of growth CO2 concentration. There was a significantly lower total non-structural carbohydrate (TNC) concentration in the leaf blades and leaf sheaths of A. capillaris grown at 680 μmol mol-1 CO2. TNC of roots of A. capillaris was unaltered by CO2 treatment. TNC concentration was increased in both leaves and sheaths of P. alpina and F. vivipara after 105 d and 65 d growth, respectively. A 4-fold increase in the water-soluble fraction (fructan) in P. alpina and in all carbohydrate fractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosynthetic capacity and leaf carbohydrate concentration was such that there was a strong positive correlation between photosynthetic capacity and total leaf N concentration (expressed on a per unit structural dry weight basis), and total nitrogen concentration of successive mature leaves reduced with time. Multiple regression of leaf photosynthetic capacity upon leaf nitrogen and carbohydrate concentrations further confirmed that leaf photosynthetic capacity was mainly determined by leaf N concentration. In P. alpina, leaf photosynthetic capacity was mainly determined by leaf CHO concentration. Thus there is evidence for down-regulation of photosynthetic capacity in P. alpina resulting from increased carbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positively correlated in P. alpina and F. vivipara. Leaf dark respiration and soluble carbohydrate concentration of source leaves were positively correlated in A. capillaris. Changes in source leaf photosynthetic capacity and carbohydrate concentration of plants grown at ambient or elevated CO2 are discussed in relation to plant growth, nutrient relations and availability of sinks for carbon.

Page Thumbnails

  • Thumbnail: Page 
[917]
    [917]
  • Thumbnail: Page 
918
    918
  • Thumbnail: Page 
919
    919
  • Thumbnail: Page 
920
    920
  • Thumbnail: Page 
921
    921
  • Thumbnail: Page 
922
    922
  • Thumbnail: Page 
923
    923
  • Thumbnail: Page 
924
    924
  • Thumbnail: Page 
925
    925
  • Thumbnail: Page 
926
    926
  • Thumbnail: Page 
927
    927
  • Thumbnail: Page 
928
    928
  • Thumbnail: Page 
929
    929