Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Improving plant production by selection for survival at low CO 2 concentrations

Hipolito Medrano, Alfred J. Keys, David W. Lawlor, Martin A.J. Parry, Joaquim Azcon-Bieto and Esteban Delgado
Journal of Experimental Botany
Vol. 46, SPECIAL ISSUE: The manipulation of photosynthetic carbon metabolism in crop improvement (SEPTEMBER 1995), pp. 1389-1396
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/23694985
Page Count: 8
  • Download ($42.00)
  • Cite this Item
Improving plant production by selection for survival at low CO
          2
          concentrations
Preview not available

Abstract

Attempts to select C3 plants with slow rates of photorespiration and increased rates of net photosynthesis have met with little success. This review analyses the properties of mutant genotypes of tobacco (Nicotiana tabacum L. cv. Wisconsin), derived from selection of haploid plants (produced by in vitro mutagenesis of anthers) which survived in CO2 concentrations close to the compensation point. Survivors were diploidized and doubled-haploid plants were self-pollinated to obtain seeds (the selected genotypes). Several glasshouse and field experiments showed that the method of selection at low CO2 concentrations gave genotypes with increased capacity for total dry matter accumulation; increases were similar (mean 24%; range 14—36%) in different conditions for two selected genotypes (SP422 and SP451) when compared to the parental genotype Wisconsin-38. This increase was related to a greater leaf area per plant (mean increase 19%; range 9—43%), to faster photosynthetic rates in mature and old leaves and to similar rates of dark respiration per unit leaf area, but smaller rates per unit dry matter. These changes were related to a greater number of mesophyll cells of smaller size in the selected genotypes. However, the increased productivity could not be related to reduced photorespiration rate or CO2 compensation point nor to improved Rubisco properties (e.g. increased specificity factor) which the selection method was designed to achieve. Selection by survival at low CO2 produced genotypes able to invest more assimilate in growing larger leaves and to maintain a better leaf carbon balance than the parent genotype. These features improved light capture and carbon accumulation and thus increased dry matter production.

Page Thumbnails

  • Thumbnail: Page 
[1389]
    [1389]
  • Thumbnail: Page 
1390
    1390
  • Thumbnail: Page 
1391
    1391
  • Thumbnail: Page 
1392
    1392
  • Thumbnail: Page 
1393
    1393
  • Thumbnail: Page 
1394
    1394
  • Thumbnail: Page 
1395
    1395
  • Thumbnail: Page 
1396
    1396