Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Mathematical Logic as Based on the Theory of Types

Bertrand Russell
American Journal of Mathematics
Vol. 30, No. 3 (Jul., 1908), pp. 222-262
DOI: 10.2307/2369948
Stable URL: http://www.jstor.org/stable/2369948
Page Count: 41
  • Download PDF
  • Cite this Item
Mathematical Logic as Based on the Theory of Types
We're having trouble loading this content. Download PDF instead.

Notes and References

This item contains 15 references.

[Footnotes]
  • This reference contains 3 citations:
    • König, " Ueber die Grundlagen der Mengenlehre und das Kontinuumproblem," Math. Annalen, Vol. LXI (1905)
    • A. C. Dixon, " On ' well-ordered ' aggregates," Proc. London Math. Soc., Series 2, Vol. IV, Part I (1906)
    • E. W. Hobson, "On the Arithmetic Continuum," ibid.
  • This reference contains 2 citations:
    • Poincar6, " Les mathematiques et la logique," Revue de Y6taphysique et de Mforale, Mai, 1906, especially sections VII and IX
    • Peano, Revista de Mathematica, Vol. VIII, No. 5 (1906), p. 149 ff
  • §
    " Una questione sui numeri transfiniti," Rendiconti del circolo matematico di Palermo, Vol. XI (1897)
  • *
    Revue de Metaphysique et de Morale, Sept., 1906, p. 645
  • *
    Formulaire Mathématique, Vol. IV, p. 5 (Turin, 1903)
  • Grundgesetze der Arithmetik, Vol. I (Jena, 1893), § 17, p. 31
  • *
    Logic, Part I, Chapter II
  • " On Denoting,". Mind, October, 1905
  • *
    M. Poincar6, Revue de AUtaphysique et de Morale, Mal, 1906
  • *
    Principles of MathematieB, § 48
  • This reference contains 2 citations:
    • Mr. Whitehead, "On Cardinal Num- bers," AMERICAN JOURNAL OF MATHEMATICS, Vol. XXIV
    • On Mathematical Concepts of the Material World," Phil. Trans. A., Vol. CCV, p. 472
  • *
    This reference contains 2 citations:
    • Begriffs- schrift (Halle, 1879), p. 1
    • Grundgesetze der Arithmetik, Vol. I (Jena, 1893), p. 9
  • *
    " On some Difficulties in the Theory of Transfinite Numbers and Order Types," Proc. London Math. Soc. Ser. II, Vol. IV, Part I
  • loc. cit.
  • Zermelo, "Beweis, dass jede Menge wohlgeordnet werden kann." Math. Annalen, Vol. LIX, pp. 514-516