Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

High-affinity olfactory receptor for the death-associated odor cadaverine

Ashiq Hussain, Luis R. Saraiva, David M. Ferrero, Gaurav Ahuja, Venkatesh S. Krishna, Stephen D. Liberles and Sigrun I. Korsching
Proceedings of the National Academy of Sciences of the United States of America
Vol. 110, No. 48 (November 26, 2013), pp. 19579-19584
Stable URL: http://www.jstor.org/stable/23757301
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.

Page Thumbnails

  • Thumbnail: Page 
[19579]
    [19579]
  • Thumbnail: Page 
19580
    19580
  • Thumbnail: Page 
19581
    19581
  • Thumbnail: Page 
19582
    19582
  • Thumbnail: Page 
19583
    19583
  • Thumbnail: Page 
19584
    19584