Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Assessment of Intrinsic Bioremediation of a Coal-Tar-Affected Aquifer Using Two-Dimensional Reactive Transport and Biogeochemical Mass Balance Approaches

Shane W. Rogers, Say Kee Ong, Greg A. Stenback, Johanshir Golchin and Bruce H. Kjartanson
Water Environment Research
Vol. 79, No. 1, Special Issue: Groundwater Part II (January 2007), pp. 13-28
Stable URL: http://www.jstor.org/stable/23805198
Page Count: 16
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Assessment of Intrinsic Bioremediation of a Coal-Tar-Affected Aquifer Using Two-Dimensional Reactive Transport and Biogeochemical Mass Balance Approaches
Preview not available

Abstract

Expedited site characterization and groundwater monitoring using direct-push technology and conventional monitoring wells were conducted at a former manufactured gas plant site. Biogeochemical data and heterotrophic plate counts support the presence of microbially mediated remediation. By superimposing solutions of a two-dimensional reactive transport analytical model, first-order degradation rate coefficients (day -1 ) of various compounds for the dissolved-phase plume were estimated (i.e., benzene [0.0084], naphthalene [0.0058], and acenaphthene [0.0011]). The total mass transformed by aerobic respiration, nitrate reduction, and sulfate reduction around the free-phase coal-tar dense-nonaqueous-phase-liquid region and in the plume was estimated to be approximately 4.5 kg/y using a biogeochemical mass-balance approach. The total mass transformed using the degradation rate coefficients was estimated to be approximately 3.6 kg/y. Results showed that a simple two-dimensional analytical model and a biochemical mass balance with geochemical data from expedited site characterization can be useful for rapid estimation of mass-transformation rates.

Page Thumbnails

  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28