Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Variation in Carbon Isotope Discrimination and Photosynthetic Gas Exchange Among Populations of Pseudotsuga menziesii and Pinus ponderosa in Different Environments

J. W. Zhang and J. D. Marshall
Functional Ecology
Vol. 9, No. 3 (Jun., 1995), pp. 402-412
DOI: 10.2307/2390003
Stable URL: http://www.jstor.org/stable/2390003
Page Count: 11
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Variation in Carbon Isotope Discrimination and Photosynthetic Gas Exchange Among Populations of Pseudotsuga menziesii and Pinus ponderosa in Different Environments
Preview not available

Abstract

1. Seedlings representing 25 populations of Pseudotsuga menziesii and 26 populations of Pinus ponderosa were grown in a common garden in Moscow, ID, USA. The seeds were collected across the natural distribution of each species, at altitudes ranging from 170 to 2774 m above sea level, latitudes from 33 N to 53 N, and longitudes from 105 W to 124 W. Lipid-free seeds from mother trees and leaf tissue from the 2-year-old progeny were analysed. The design enabled us not only to measure genetically determined variation in carbon isotope discrimination (Δ) and gas exchange characteristics but also to compare performance in the common garden and in situ. 2. In the common garden, significant population variation in Δ, gas exchange and specific leaf area was detected among seedlings of Pseudotsuga menziesii. Coastal, low-altitude genotypes had significantly lower Δ than interior, high-altitude genotypes. In Pinus ponderosa, populations varied only in specific leaf area. These broadly distributed sympatric species differ in genetic structure with respect to gas-exchange characteristics. 3. In the common garden, high Δ of both species was associated with high stomatal conductance relative to photosynthetic rate. Specific leaf area, although strongly correlated with Δ, varied in the wrong direction to explain variation in Δ. 4. In situ Δ was correlated with both altitude and vapour pressure deficit (VPD) in Pseudotsuga menziesii (r2=0.42, P=0.002 and r2=0.25, P<0.02 for altitude and VPD, respectively), but not in Pinus ponderosa (r2=0.004, P>0.77 and r2=0.06, P>0.21 for altitude and VPD, respectively). 5. Foliage Δ from the progeny grown in the common garden was significantly correlated, in both species, with Δ of the in situ maternal photosynthate in the seeds; however, the correlation was negative in Pseudotsuga menziesii and positive in Pinus ponderosa. The negative correlation indicates a strong acclimatory response, perhaps to VPD, in Pseudotsuga menziesii. 6. Altitudinal decreases in intercellular CO2 partial pressures inferred from isotopic data were insufficient to compensate for increased VPD. Photosynthetic water-use efficiency (net photosynthesis/transpiration) was estimated to decrease by two- to fourfold from sea level to 2800 m altitude within the distribution limits of these species.

Page Thumbnails

  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412