Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Relationships Between First Flowering Date and Temperature in the Flora of a Locality in Central England

A. H. Fitter, R. S. R. Fitter, I. T. B. Harris and M. H. Williamson
Functional Ecology
Vol. 9, No. 1 (Feb., 1995), pp. 55-60
DOI: 10.2307/2390090
Stable URL: http://www.jstor.org/stable/2390090
Page Count: 6
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Relationships Between First Flowering Date and Temperature in the Flora of a Locality in Central England
Preview not available

Abstract

1. A data set of 36 years (1954-1989) of observations on first flowering dates (FFD) of 243 species of angiosperms and gymnosperms in one locality in southern central England is presented and analysed. 2. Individual FFDs ranged from 1 January to 17 August, and species varied considerably in the standard deviation of their FFD. The most variable species were mainly annuals and there was a negative relationship between mean FFD and variability, early-flowering species being the most variable. 3. For 219 of the 243 species, it was possible to fit regression equations for FFD to some set of monthly mean temperatures of the preceding months. These fits were generally best for woody plants and geophytes. February temperature was overall the most important determinant of flowering time. Sixty per cent of species flowering between January and April were affected by temperature 1-2 months before flowering; for summer (May onwards) flowering species, temperatures up to 4 months previously were important. 4. High spring temperatures advanced flowering by a mean of 4 days per degree. In contrast, both spring- and summer-flowering species were retarded in flowering by high temperatures in the previous autumn. 5. These relationships were used to simulate the effects of climatic warming: an overall increase of 1 C in each month would advance flowering in some species and retard others, by as much as 6 weeks. Retarded species were early-flowering, advanced species late-flowering. These results suggest a high degree of dependence of flowering time on temperature, and the variation between species implies that responses to climatic warming may be difficult to predict.

Page Thumbnails

  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
Part of Sustainability