Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A New Model to Predict the Behaviour of Cavitated Squeeze-Film Bearings

C. R. Burrows, M. N. Sahinkaya and N. C. Kucuk
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 411, No. 1841 (Jun. 8, 1987), pp. 445-466
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/2398040
Page Count: 22
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A New Model to Predict the Behaviour of Cavitated Squeeze-Film Bearings
Preview not available

Abstract

Squeeze-film bearings are used extensively to control vibration in rotor-bearing systems. No closed-form mathematical model exists to represent the stiffness and damping characteristics of a cavitated squeeze-film bearing when it is describing a non-circular, non-concentric orbit. In this paper nonlinear expressions are developed for the oil-film forces from which are derived two direct linear stiffness and two direct linear damping coefficients with all the cross stiffness and damping coefficients zero. The linearized stiffness coefficients and the damping coefficients are functions of the amplitude of the journal orbit. The dynamic lift-force which is fundamental to the successful operation of a cavitated squeeze-film bearing when designed without centralizing springs has not previously been predicted analytically. An expression is derived for this lift force. Its magnitude is shown to be dependent upon the amplitude of the steady-state orbit, that is, it is dependent upon the dynamic load. A numerical experiment is performed to assess the validity of the new model over a range of operating conditions.

Page Thumbnails

  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466