Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Mixing, Entrainment and Fractal Dimensions of Surfaces in Turbulent Flows

K. R. Sreenivasan, R. Ramshankar and C. Meneveau
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 421, No. 1860 (Jan. 9, 1989), pp. 79-108
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/2398548
Page Count: 31
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Mixing, Entrainment and Fractal Dimensions of Surfaces in Turbulent Flows
Preview not available

Abstract

Some basic thoughts are set down on the relation between the fractal dimension of various surfaces in turbulent flows, and the practically important processes of mixing between two streams (reacting or otherwise) separated by a convoluted surface, as well as of entrainment of irrotational flow by a turbulent stream. An expression based on heuristic arguments is derived for the flux of transportable properties (such as mass, momentum, and energy) across surfaces, and a prediction made on this basis for the fractal dimension of surfaces in fully turbulent flows is shown to be in essential agreement with measurements. It is further shown that this prediction remains robust when corrected for the non-uniform effects along the surface. A related prediction concerning the dependence of mixing on the Reynolds number and the fractal dimension of the surface is substantiated, in the developing as well as the fully developed states, by independent measurements of both the fractal dimension and the amount of mixing between reactants in a temporally evolving countercurrent shear flow.

Page Thumbnails

  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108