Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Promotion and Prevention of Recoiling in a Maximally Snaillike Vermetid Gastropod: A Case Study for the Centenary of Dollo's Law

Stephen Jay Gould and Betsey A. Robinson
Paleobiology
Vol. 20, No. 3 (Summer, 1994), pp. 368-390
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/2401009
Page Count: 23
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Promotion and Prevention of Recoiling in a Maximally Snaillike Vermetid Gastropod: A Case Study for the Centenary of Dollo's Law
Preview not available

Abstract

The Neogene species Petaloconchus sculpturatus presents a contradiction in terms, for it grows whorl "packages" of nearly perfect regularity, but ranks within the most geometrically irregular family of uncoiled gastropods, the Vermetidae. We perform a first biometric study of vermetids (only possible because sufficient regularity of growth permits us to number and identify whorls) to specify and characterize the factors on both sides of this "exquisite tension" between promotion and prevention of recoiling. Promoting factors include the older phyletic heritage of preserved dextral coiling, and the more immediate vermetid (or specifically petaloconchid) features of growth toward open spaces (where regular coiling might proceed in an unimpeded fashion); radular excision of discordant feeding tubes with shaping of the resulting scar so that growth may proceed in conformity with previous whorls; and locking of subsequent whorls upon a keel formed by longitudinal bead-rows of the previous whorl. Preventing factors include prominent phyletic heritage of all vermetids-maximal early irregularity enjoined by discordance between larval and subsequent growth (with teleoconch wrapping itself around the protoconch), thus precluding an ordered substrate to act as a foundation for regular whorl "packages" of intermediary growth-and a set of features specific to this lineage and acting as geometric constraints. In this category, we particularly document the exceedingly low rate of whorl expansion and the consequently wide umbilical space that produces a shell akin to winding a cylindrical coil of narrow-diameter rope around the periphery of a wide circular platform. This complex combination of promoting and preventing factors produces a shell that is tantalizingly close to fully regular, but cannot truly reattain this previous phyletic state-thus providing a fine example of Dollo's Law at the centenary of his formation of irreversibility.

Page Thumbnails

  • Thumbnail: Page 
[368]
    [368]
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390