Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Heterochrony in Brontothere Horn Evolution: Allometric Interpretations and the Effect of Life History Scaling

Gerald S. Bales
Paleobiology
Vol. 22, No. 4 (Autumn, 1996), pp. 481-495
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/2401201
Page Count: 15
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Heterochrony in Brontothere Horn Evolution: Allometric Interpretations and the Effect of Life History Scaling
Preview not available

Abstract

The Brontotheriidae (Perissodactyla, Mammalia) are often used as an illustration of vertebrate macroevolutionary trends because their morphological evolution includes significant size increases accompanied by the disproportionate lengthening of bony frontonasal horns. The positive phylogenetic allometry for horn length vs. skull length is among the strongest known of such relationships in vertebrate phylogeny. Hypotheses explaining the change from small, incipient horns in Eocene ancestors to longer horns in Oligocene descendants have included two heterochronic mechanisms, hypermorphosis (extrapolation) and predisplacement (earlier onset time of horn growth). These proposed peramorphic mechanisms derive from interpretation of adult intergeneric allometries in logarithmic data spaces. Analysis of the raw (unlogged) data shows that the simple allometric model previously used is not an appropriate model for this specific problem. The heterochronic interpretations derived from them are therefore unsupported (but not disproven) by the allometries. A more appropriate allometric model for the data (full model) does not support any heterochronic interpretation. Previously unaccounted for in the heterochronic hypotheses is a complication due to body-size scaling effects on life history stage lengths. Neontological scaling patterns suggest that brontothere size increases were probably accompanied by increasing life spans and longer developmental stages. This effect broadens the types of heterochronies that may be postulated. Semiquantitative analyses comparing brontotheres with similarly sized extant ungulates show the hypothesized effect of larger size on brontothere life history stages. A scaled descendant ontogeny introduces the problem of relative vs. absolute time frames within which to view ontogenetic onset times. Thus, predisplacements, postdisplacements, or nondisplacements may be viewed as relative or absolute with respect to ancestral ontogenies. This raises a fundamental question about how development scales, which in turn affects how heterochronies are interpreted. A scaling effect suggests that brontothere horns are more likely postdisplaced in the traditional absolute time sense. Paradoxically then, while the descendant adult horn is peramorphic, its onset time may have shifted in a paedomorphic direction. Data for two Oligocene juvenile brontotheres suggest that most horn growth occurred late in their longer (i.e., descendant) ontogenies (hypermorphosis), and that the horns probably grew at faster rates (acceleration) than in Eocene taxa.

Page Thumbnails

  • Thumbnail: Page 
[481]
    [481]
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483
  • Thumbnail: Page 
484
    484
  • Thumbnail: Page 
485
    485
  • Thumbnail: Page 
486
    486
  • Thumbnail: Page 
487
    487
  • Thumbnail: Page 
488
    488
  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495