Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Thermal Time, Chill Days and Prediction of Budburst in Picea sitchensis

M. G. R. Cannell and R. I. Smith
Journal of Applied Ecology
Vol. 20, No. 3 (Dec., 1983), pp. 951-963
DOI: 10.2307/2403139
Stable URL: http://www.jstor.org/stable/2403139
Page Count: 13
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Thermal Time, Chill Days and Prediction of Budburst in Picea sitchensis
Preview not available

Abstract

(1) The dates of budhurst of lateral shoots on 2- to 10-year old trees of Picea sitchensis were recorded on fourteen occasions at sites near meteorological stations in lowland and upland Britain between 1960 and 1980. (2) The following relationship accounted for 92% of the variation in thermal time from 1 February to the date of budburst among the fourteen observations: thermal time = 67.4 + 4401.8 exp (-0.042 x chill days) where thermal time was day degrees >5 ⚬C accumulated from 1 February, and chill days were the number of days ⩽5 ⚬C counted from 1 November, both based on mean daily air temperature ((max. + min.)/2). This model may be used to estimate the date of budburst on young P. sitchensis of most provenances growing in upland Britain. (3) The following features or assumptions of the model were examined with reference to the literature and/or by experimentation: the small effect of provenance; linearity in the relationship between bud growth rate and temperature; the large effect of chilling on thermal time to budhurst; the omission of daylength and soil temperature as variables; the choice of starting dates for effective chilling and thermal time; and the use of simple fixed base temperatures. (4) The model was applied to mean daily temperatures at Eskdalemuir for the period 1912-82. The predicted dates of budburst ranged from 23 April in 1961 to 30 May in 1923, with a mean date of 12 May.

Page Thumbnails

  • Thumbnail: Page 
951
    951
  • Thumbnail: Page 
952
    952
  • Thumbnail: Page 
953
    953
  • Thumbnail: Page 
954
    954
  • Thumbnail: Page 
955
    955
  • Thumbnail: Page 
956
    956
  • Thumbnail: Page 
957
    957
  • Thumbnail: Page 
958
    958
  • Thumbnail: Page 
959
    959
  • Thumbnail: Page 
960
    960
  • Thumbnail: Page 
961
    961
  • Thumbnail: Page 
962
    962
  • Thumbnail: Page 
963
    963