Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Redox modulation of Rubisco conformation and activity through its cysteine residues

Joaquín Moreno, María Jesús García-Murria and Julia Marín-Navarro
Journal of Experimental Botany
Vol. 59, No. 7, Special Issue: Photosynthesis: CO 2 uptake and the pathways of carbon fixation (2008), pp. 1605-1614
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/24037406
Page Count: 10
  • Download ($42.00)
  • Cite this Item
Redox modulation of Rubisco conformation and activity through its cysteine residues
Preview not available

Abstract

Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure of a small loop (between Ser61 and Thr68) when oxidized. Progressive oxidation of Rubisco cysteines using disulphide/thiol mixtures at different ratios have shown that inactivation occurs under milder oxidative conditions than proteolytic sensitization, suggesting the involvement of different critical cysteines. Site-directed mutagenesis of conserved cysteines in the Chlamydomonas reinhardtii Rubisco identified Cys449 and Cys459 among those involved in oxidative inactivation, and Cys172 and Cys192 as the specific target for arsenite. The physiological importance of Rubisco redox regulation is supported by the in vivo response of the cysteine mutants to stress conditions. Substitution of Cys172 caused a pronounced delay in stress-induced Rubisco degradation, while the replacement of the functionally redundant Cys449-Cys459 pair resulted in an enhanced catabolism with a faster high-molecular weight polymerization and translocation to membranes. These results suggest that several cysteines contribute to a sequence of conformational changes that trigger the different stages of Rubisco catabolism under increasing oxidative conditions.

Page Thumbnails

  • Thumbnail: Page 
[1605]
    [1605]
  • Thumbnail: Page 
1606
    1606
  • Thumbnail: Page 
1607
    1607
  • Thumbnail: Page 
1608
    1608
  • Thumbnail: Page 
1609
    1609
  • Thumbnail: Page 
1610
    1610
  • Thumbnail: Page 
1611
    1611
  • Thumbnail: Page 
1612
    1612
  • Thumbnail: Page 
1613
    1613
  • Thumbnail: Page 
1614
    1614