Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Litter Decomposition, Nitrogen Dynamics and Litter Microarthropods in a Southern Appalachian Hardwood Forest 8 Years Following Clearcutting

John M. Blair and D. A. Crossley, Jr.
Journal of Applied Ecology
Vol. 25, No. 2 (Aug., 1988), pp. 683-698
DOI: 10.2307/2403854
Stable URL: http://www.jstor.org/stable/2403854
Page Count: 16
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Litter Decomposition, Nitrogen Dynamics and Litter Microarthropods in a Southern Appalachian Hardwood Forest 8 Years Following Clearcutting
Preview not available

Abstract

(1) Litter decomposition rates, nitrogen dynamics and litter microarthropods on the xeric slopes of a watershed 8 years after clearcutting (WS 7) and on an adjacent reference watershed (WS 2) at the Coweeta Hydrologic Laboratory were measured using litterbags. Litter of Cornus florida L., Acer rubrum L. and Quercus prinus L. was used as experimental substrates in three plots on adjacent areas of both watersheds. Results from this study were compared with those obtained before and after cutting to assess the longer-term changes induced by canopy removal. (2) Reduced litter decomposition rates were associated with clearcutting. Litter nitrogen dynamics were also affected. Net immobilization of nitrogen in litter substrates was lower on WS 7. Lower net nitrogen immobilization was related to slower increases in nitrogen concentration per unit mass lost in litter on WS 7. (3) Mean annual densities of total litter microarthropods remained 28% lower on WS 7 than on WS 2, 8 years after cutting. Previous studies indicated clearcutting initially reduced mean annual densities of litter microarthropods by > 50%. Mesostigmata and Oribatei densities averaged 50 and 54% lower, respectively, than on WS 2. Prostigmata and Collembola densities averaged 20 and 24% lower, respectively, than on WS 2. This differential response changed the relative abundances of major groups. Changes in litter decomposition rates and nitrogen dynamics were consistent with effects associated with lower microarthropod densities and suggest that reduced microarthropod densities may be important. (4) Results of this study differ from those at northern hardwood forest sites where clearcutting caused increased decomposition rates. This suggests that generalizations from northern hardwood forests may not apply to other regions. Instead the effects of canopy removal depend on both the nature of pre-disturbance processes and on the 'site-specific' effects of disturbance on the processes studied.

Page Thumbnails

  • Thumbnail: Page 
683
    683
  • Thumbnail: Page 
684
    684
  • Thumbnail: Page 
685
    685
  • Thumbnail: Page 
686
    686
  • Thumbnail: Page 
687
    687
  • Thumbnail: Page 
688
    688
  • Thumbnail: Page 
689
    689
  • Thumbnail: Page 
690
    690
  • Thumbnail: Page 
691
    691
  • Thumbnail: Page 
692
    692
  • Thumbnail: Page 
693
    693
  • Thumbnail: Page 
694
    694
  • Thumbnail: Page 
695
    695
  • Thumbnail: Page 
696
    696
  • Thumbnail: Page 
697
    697
  • Thumbnail: Page 
698
    698