Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Modulating the light environment with the peach 'asymmetric orchard': effects on gas exchange performances, photoprotection, and photoinhibition

Pasquale Losciale, Wah Soon Chow and Luca Corelli Grappadelli
Journal of Experimental Botany
Vol. 61, No. 4 (2010), pp. 1177-1192
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/24038670
Page Count: 16
  • Download ($42.00)
  • Cite this Item
Preview not available
Preview not available

Abstract

The productivity of fruit trees is a linear function of the light intercepted, although the relationship is less tight when greater than 50% of available light is intercepted. This paper investigates the management of light energy in peach using the measurement of whole-tree light interception and gas exchange, along with the absorbed energy partitioning at the leaf level by concurrent measurements of gas exchange and chlorophyll fluorescence. These measurements were performed on trees of a custom-built 'asymmetric' orchard. Whole-tree gas exchange for north–south, vertical canopies (C) was similar to that for canopies intercepting the highest irradiance in the morning hours (W), but trees receiving the highest irradiance in the afternoon (E) had the highest net photosynthesis and transpiration while maintaining a water use efficiency (WUE) comparable to the other treatments. In the W trees, 29% and 8% more photosystems were damaged than in C and E trees, respectively. The quenching partitioning revealed that the non-photochemical quenching (NPQ) played the most important role in excess energy dissipation, but it was not fully active at low irradiance, possibly due to a sub-optimal trans-thylakoid ΔpH. The non-net carboxylative mechanisms (NC) appeared to be the main photoprotective mechanisms at low irradiance levels and, probably, they could facilitate the establishment of a trans-thylakoid ΔpH more appropriate for NPQ. These findings support the conclusion that irradiance impinging on leaves may be excessive and can cause photodamage, whose repair requires energy in the form of carbohydrates that are thereby diverted from tree growth and productivity.

Page Thumbnails

  • Thumbnail: Page 
[1177]
    [1177]
  • Thumbnail: Page 
1178
    1178
  • Thumbnail: Page 
1179
    1179
  • Thumbnail: Page 
1180
    1180
  • Thumbnail: Page 
1181
    1181
  • Thumbnail: Page 
1182
    1182
  • Thumbnail: Page 
1183
    1183
  • Thumbnail: Page 
1184
    1184
  • Thumbnail: Page 
1185
    1185
  • Thumbnail: Page 
1186
    1186
  • Thumbnail: Page 
1187
    1187
  • Thumbnail: Page 
1188
    1188
  • Thumbnail: Page 
1189
    1189
  • Thumbnail: Page 
1190
    1190
  • Thumbnail: Page 
1191
    1191
  • Thumbnail: Page 
1192
    1192