Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effects of Soil Disturbance on Vegetation Recovery and Nutrient Accumulation Following Whole-Tree Harvest of a Northern Hardwood Ecosystem

Pu Mou, Timothy J. Fahey and Jeffrey W. Hughes
Journal of Applied Ecology
Vol. 30, No. 4 (1993), pp. 661-675
DOI: 10.2307/2404245
Stable URL: http://www.jstor.org/stable/2404245
Page Count: 15
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effects of Soil Disturbance on Vegetation Recovery and Nutrient Accumulation Following Whole-Tree Harvest of a Northern Hardwood Ecosystem
Preview not available

Abstract

1. Accumulation of recovering vegetation is often the principal mechanism limiting nutrient loss following large-scale disturbance of forest ecosystems. The relationships were examined between soil disturbance associated with whole-tree harvest, and the rates and patterns of biomass and nutrient accumulation in regrowing vegetation at Hubbard Brook Experimental Forest (HBEF), New Hampshire. 2. Recovering vegetation was dominated initially by pin cherry and Rubus spp., but the importance of the tree species that dominate the mature forest (beech, maple, birch) increased through 6 years of succession. In general, vegetation recovery was comparable to that following previous clearcutting experiments at HBEF. 3. Very high spatial variation was observed in the composition and density of the recovering vegetation. The principal causes of this variation were disturbance to the soil during the harvest operation and availability of reproductive propagules. 4. Significant differences in composition and growth of the plant community were observed among three soil disturbance classes. On severely disturbed sites, where mineral soil was exposed, pre-existing seedings were mostly eliminated and early rates of biomass and nutrient accumulation were low, partly because of slow early growth of colonizing yellow birch and probably also partly because of low site quality (water and nutrient availability). Later, the root system of trees growing on severely disturbed sites grew laterally into adjacent, more fertile locations and growth rates increased. Scarified sites often supported very dense stands of pin cherry that grew rapidly for a few years, but in Years 5-6 suffered from severe intraspecific competition that apparently limited biomass and nutrient accumulation. Within this scarified class the nature and intensity of soil disturbance were quite variable so that high within-class variation in vegetation recovery was observed. The highest average rates of biomass and nutrient accumulation were observed on undisturbed sites, but very high spatial variability in tree density was also observed in this class. 5. Very high nutrient concentrations (especially nitrogen) in pin cherry and Rubus spp. in the first 2 years resulted in non-linear relationships between biomass and nutrient accumulation in vegetation across sites and years. Also, relatively low calcium concentrations in the wood and bark of pin cherry led to relatively low rates of calcium accumulation in vegetation.

Page Thumbnails

  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663
  • Thumbnail: Page 
664
    664
  • Thumbnail: Page 
665
    665
  • Thumbnail: Page 
666
    666
  • Thumbnail: Page 
667
    667
  • Thumbnail: Page 
668
    668
  • Thumbnail: Page 
669
    669
  • Thumbnail: Page 
670
    670
  • Thumbnail: Page 
671
    671
  • Thumbnail: Page 
672
    672
  • Thumbnail: Page 
673
    673
  • Thumbnail: Page 
674
    674
  • Thumbnail: Page 
675
    675