Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Spatial Variability in the Potential for Symbiotic N2 Fixation by Woody Plants in a Subtropical Savanna Ecosystem

S. F. Zitzer, S. R. Archer and T. W. Boutton
Journal of Applied Ecology
Vol. 33, No. 5 (Oct., 1996), pp. 1125-1136
DOI: 10.2307/2404692
Stable URL: http://www.jstor.org/stable/2404692
Page Count: 12
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Spatial Variability in the Potential for Symbiotic N2 Fixation by Woody Plants in a Subtropical Savanna Ecosystem
Preview not available

Abstract

1. Root infection by symbiotic N2-fixing Frankia and Rhizobium strains was quantified in relation to light and soil properties for seedlings of 12 woody species from a subtropical savanna in southern Texas, USA. 2. None of four rhamnaceous species nodulated, despite the fact that bioassays with a known actinorhizal species yielded 13 nodules per seedling. Celtis pallida (Ulmaceae), Acacia greggii and Acacia berlandieri (Leguminosae) also failed to nodulate even though field populations of these species were characterized by high (2.7-4.2%) foliar nitrogen concentration. 3. Infective rhizobia occurred in all soils studied regardless of soil depth, distance from a host plant or type of plant cover. Plant growth in N-free media and acetylene reduction activity suggested that all nodules were capable of N2-fixation. 4. The extent of nodulation varied by species. However, nodulated seedlings were taller, produced more biomass and allocated less biomass to root systems than their non-nodulated counterparts. 5. Numbers of nodules on seedlings of Prosopis glandulosa, the dominant woody species in this subtropical savanna and throughout the south-western USA, were reduced by low light (15% full sunlight) regardless of soil N level; at medium and full sunlight nodule biomass expressed as a fraction of whole plant biomass decreased with increasing soil N. Nodulation of field-grown P. glandulosa appears to be ephemeral, apparently varying with changes in soil moisture. 6. Nodulation and N2 fixation among woody legumes in subtropical savannas can occur across a broad range of soil conditions and depths with significant impacts on local and regional N-cycles. 7. Field levels of foliar N in species that failed to nodulate in the laboratory were comparable to or greater than those in species capable of nodulation, suggesting that leaf N is not a reliable indicator of N2 fixation.

Page Thumbnails

  • Thumbnail: Page 
1125
    1125
  • Thumbnail: Page 
1126
    1126
  • Thumbnail: Page 
1127
    1127
  • Thumbnail: Page 
1128
    1128
  • Thumbnail: Page 
1129
    1129
  • Thumbnail: Page 
1130
    1130
  • Thumbnail: Page 
1131
    1131
  • Thumbnail: Page 
1132
    1132
  • Thumbnail: Page 
1133
    1133
  • Thumbnail: Page 
1134
    1134
  • Thumbnail: Page 
1135
    1135
  • Thumbnail: Page 
1136
    1136