Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Dinosaur Physiology and the Origin of Mammals

Robert T. Bakker
Evolution
Vol. 25, No. 4 (Dec., 1971), pp. 636-658
DOI: 10.2307/2406945
Stable URL: http://www.jstor.org/stable/2406945
Page Count: 23
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Dinosaur Physiology and the Origin of Mammals
Preview not available

Abstract

Locomotion, activity patterns, and thermoregulation were closely related in the evolution of tetrapods. The short, stocky limbs of the first Carboniferous reptiles suggest that they were not heliophilic and were active in the shaded areas of the coal forests. The first archosaurs retained the sprawling locomotion and possibly the thermal preferences of primitive reptiles. However, by the Mid Triassic large, predatory archosaurs with more erect posture and very gracile, quick-action limbs appeared, and in these animals the metabolic scope and endogenous heat production during activity may have exceeded that of large living monitor lizards. Fully Erect Posture, permitting support of the body free of the ground for long periods of time, appeared in dinosaurs at the end of the Triassic. Dinosaurs probably combined large body size, high body temperature, large hatchling size, and continuous high levels of activity with an efficient aviantype air-sac system for loss of excess heat. Thus dinosaurs could achieve homeothermy in the warm Mesozoic climates. Birds were derived from dinosaurs, and, with the development of feathered insulation, could apply the dinosaurian mechanisms for homeothermy to small body size. Advanced mammal-like reptiles may not have been heliophilic, but specialized in reducing surface area to volume ratios, possibly to conserve heat. In the competition with Triassic archosaurs, the retention of sprawling locomotion and possibly the lack of efficient heat-loss mechanisms in therapsids caused their extinction. However, with the development of superficial insulation of hair and high endogenous heat production, the first mammals could maintain their activity temperatures all through the night and could exploit nocturnality more extensively than nocturnal lizards, while avoiding activity during the day and thus reducing the dangers of overheating and of contact with the large predatory diurnal lizards and dinosaurs. Mesozoic mammals were restricted to small body size partly because of the difficulty of losing excess body heat in a large mammal lacking efficient evaporative cooling, but mostly because mammals were competitively inferior to dinosaurs during the day and were forced to seek secure diurnal shelters in trees and burrows to escape the great reptiles.

Page Thumbnails

  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658