Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Proximate Mechanisms of Sexual Selection in Wood Frogs

Richard D. Howard and Arnold G. Kluge
Evolution
Vol. 39, No. 2 (Mar., 1985), pp. 260-277
DOI: 10.2307/2408361
Stable URL: http://www.jstor.org/stable/2408361
Page Count: 18
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Proximate Mechanisms of Sexual Selection in Wood Frogs
Preview not available

Abstract

Observations and several types of field experiments on the mating behavior of wood frogs have revealed the proximate mechanisms for a size-related reproductive advantage in both males and females. For females, larger individuals produce larger clutches; for males, larger individuals can better remain clasped to females when contested by rival males and can better depose males clasped to other females. No results obtained support of the existence of mate choice in either males or females. Males were estimated to be 4.74 times as variable as females in the number of zygotes produced per individual per season; however, much of the variation in male RS resulted from a male-biased sex ratio at the breeding site rather than from sexual selection. After taking sex ratio effects into consideration, males were estimated to be only 1.63 times as variable as females. Patterns of variation in RS in males and females are associated with numerous sex-specific differences in life history and morphology. Life history differences include differential growth rates, ages at sexual maturity, and rates of mortality. Interpretation of how the body size dimorphism (females larger than males) in this species relates to sexual selection is consistent with information on how similar variations in body size influence RS for each sex, and how males and females differ in the functional relationship between body size and RS. Average RS increases more with body size in females than in males. Although body size directly influences RS for females, the possibility exists that, for males, other anatomical features correlated with body size more directly affect RS. Preliminary evidence suggests that sexual selection influences male arm length and that the male body size : RS relationship results as an incidental correlation.

Page Thumbnails

  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277