Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Advantages and Disadvantages of Egret and Heron Brood Reduction

Douglas W. Mock and Geoffrey A. Parker
Evolution
Vol. 40, No. 3 (May, 1986), pp. 459-470
DOI: 10.2307/2408569
Stable URL: http://www.jstor.org/stable/2408569
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Advantages and Disadvantages of Egret and Heron Brood Reduction
Preview not available

Abstract

Data from great egrets and great blue herons were used to test a fundamental assumption of Lack's brood-reduction hypothesis, that mortality is brood-size dependent. This was confirmed for the largest brood sizes (4 and 3), which, in egrets, also have the highest sib-fighting rates. Broods of one, however, experienced paradoxically high mortality, especially early in the season. The hypothesis is advanced that parents desert unprofitably small broods when sufficient time remains for production of a larger brood. A simple game-theory model shows that this parental desertion may hinge primarily on the overall costs of renesting. Egret brood reduction caused by sibling aggression (siblicide) occurred later than less aggressive forms of brood reduction. The inclusive fitness of senior broodmates is maximized by the successful fledging of all sibs, and the physical superiority of seniors (in food-handling for herons; food-handling and aggression for egrets) usually suffices to guarantee their own welfare in brood competitions. Finally, it is shown that the last chick in asynchronously hatching broods represents two kinds of reproductive value (RV) to the parents-"extra RV" (obtained despite the survival of elder sibs) and "insurance RV" (obtained only when at least one elder sib dies first)-which can be distinguished from field data. This approach can be used in comparisons with other asynchronous species for partitioning the fitness contributions of marginal offspring.

Page Thumbnails

  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469
  • Thumbnail: Page 
470
    470