Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Costs of Changing Sex and the Ontogeny of Males Under Contest Competition for Mates

Steven G. Hoffman, Mark P. Schildhauer and Robert R. Warner
Evolution
Vol. 39, No. 4 (Jul., 1985), pp. 915-927
DOI: 10.2307/2408690
Stable URL: http://www.jstor.org/stable/2408690
Page Count: 13
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Costs of Changing Sex and the Ontogeny of Males Under Contest Competition for Mates
Preview not available

Abstract

In its simplest form, the size-advantage hypothesis predicts that individuals should change sex in order to increase their reproductive success. In terms of lifetime expectations, this must be true for the hypothesis to hold. However, as we review here, some loss of reproductive success may occur immediately after sex change. Unavoidable costs (e.g., those resulting from a restructuring of the gonad) have not been adequately distinguished from adaptive allocations of resources which diminish current reproduction in favor of large increases in future mating success. This strategy can become particularly important for species in which a few males monopolize matings. To illustrate this idea, we describe the changes in mating frequency as mature females become sexually active males in three species of protogynous wrasses. In one species, a male defends a permanent, all-purpose territory composed of up to 12 females. When he is removed, a single female changes sex and successfully completes mating sequences with all females in the territory within an average of 5.6 days. This duration roughly corresponds to the time required for functional transformation of gonads; thus, individuals in this species suffer few reproductive losses as a result of changing sex. The largest males in two other species mate with an average of 25 to 50 females per day, but only by successfully defending reproductive territories. In one of those species, individuals that changed sex mated infrequently over a two-year period after sexual transformation and, by the end of the study, were still well below the average size of males that consistently obtained territories. Sex-changed individuals in the other species had very low reproductive success for up to 45% of the maximum lifespan as a male. It is improbable that the substantial cost of changing sex in the latter two species results from gonad restructuring or from mistakes due to imprecise cues for sex change. Instead, the cost appears to represent an investment in growth rather than current reproduction as a means of rapidly attaining a size advantage when individuals face intense competition for extraordinarily successful mating territories.

Page Thumbnails

  • Thumbnail: Page 
915
    915
  • Thumbnail: Page 
916
    916
  • Thumbnail: Page 
917
    917
  • Thumbnail: Page 
918
    918
  • Thumbnail: Page 
919
    919
  • Thumbnail: Page 
920
    920
  • Thumbnail: Page 
921
    921
  • Thumbnail: Page 
922
    922
  • Thumbnail: Page 
923
    923
  • Thumbnail: Page 
924
    924
  • Thumbnail: Page 
925
    925
  • Thumbnail: Page 
926
    926
  • Thumbnail: Page 
927
    927