Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the Coexistence and Coevolution of Asexual and Sexual Competitors

Ted J. Case and Mark L. Taper
Evolution
Vol. 40, No. 2 (Mar., 1986), pp. 366-387
DOI: 10.2307/2408816
Stable URL: http://www.jstor.org/stable/2408816
Page Count: 22
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Coexistence and Coevolution of Asexual and Sexual Competitors
Preview not available

Abstract

The coexistence and coevolution of sexual and asexual species under resource competition are explored with three models: a nongenetic ecological model, a model including single locus genetics, and a quantitative-genetic model. The basic assumption underlying all three models is that genetic differences are translated into ecological differences. Hence if sexual species are genetically more variable, they will be ecologically more variable. Under classical competition theory, this increased ecological variability can, in many cases, be an advantage to individual sexual genotypes and to the sexual species as a whole. The purpose of this paper is to determine the conditions when this advantage will outway three disadvantages of sexuality: the costs of males, of segregation, and of the additive component of recombination. All three models reach similar conclusions. Although asexuality confers an advantage, it is much less than a two-fold advantage because minor increases in the overall species niche width of the sexual species will offset the reproductive advantage of the asexual species. This occurs for two reasons. First, an increase in species niche width increases the resource base of the sexual species. Second, to the extent that the increase in niche width is due to increased differences between individuals, a reduction in intraspecific competition will result. This is not to imply that the sexual species will always win. The prime conditions that enable sexual species to stably coexist with or even supplant an asexual sister species are: 1) relatively high between-genotype (but within-species) niche differentiation; 2) significant niche differences between the species; 3) low environmental variance; 4) severe resource exploitation; 5) larger within-phenotype niche width in the sexual species than in the asexual species. Spatial or temporal heterogeneities are not required in this model. This is an important difference between this model and other models for sexual advantage. Instead, depletion of resources used by common genotypes creates a rare-genotype advantage. The sexual species, with its great diversity of genotypes, is better equipped to capture this advantage. Although the mechanisms of our model are framed in terms of competition for shared resources, the important factor is that it generates frequency-dependent fitnesses. Other frequency-dependent ecological mechanisms, such as shared predators with functional responses, or shared genotypically-specific parasites, would work as well.

Page Thumbnails

  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387