Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Dispersal and Plant Mating Systems: The Evolution of Self-Fertilization in Subdivided Populations

Kent E. Holsinger
Evolution
Vol. 40, No. 2 (Mar., 1986), pp. 405-413
DOI: 10.2307/2408818
Stable URL: http://www.jstor.org/stable/2408818
Page Count: 9
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Dispersal and Plant Mating Systems: The Evolution of Self-Fertilization in Subdivided Populations
Preview not available

Abstract

Intermediate rates of self-fertilization can be evolutionarily stable when the progeny of self-fertilization events are less successful migrants than those of outcrossing events, unless self-fertilization reduces an individual's contribution to the pollen pool by an amount equal to the rate at which it self-fertilizes. This result holds regardless of whether pollen or diaspores are more widely dispersed. The differential migration of selfed and outcrossed progeny may be a result of differential establishment with comparable rates of dispersal, or it may be a result of differential dispersal rates. In the first case, detailed predictions concerning the evolutionarily stable selfing rate can be made. In the second case, only qualitative predictions are possible in the absence of specific assumptions about how the migration rate is affected by the average selfing rate in each subpopulation.

Page Thumbnails

  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413