Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Migration and Genetic Drift in Human Populations

Alan R. Rogers and Henry C. Harpending
Evolution
Vol. 40, No. 6 (Nov., 1986), pp. 1312-1327
DOI: 10.2307/2408956
Stable URL: http://www.jstor.org/stable/2408956
Page Count: 16
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Migration and Genetic Drift in Human Populations
Preview not available

Abstract

In humans and many other species, mortality is concentrated early in the life cycle, and is low during the ages of dispersal and reproduction. Yet precisely the opposite is assumed by classical population-genetics models of migration and genetic drift. We introduce a model in which population regulation occurs before migration. In contrast to the conventional model, our model implies that geographic variation in the allele frequencies of newborns should exceed that of adults. Thus, it is important to distinguish genetic variation of adults from that of newborns in species with human-like life cycles. Classical models deal with the variance of group allele frequencies about the allele frequency of a hypothetical "continent" or "foundation stock." Empirical studies, however, can only measure "reduced" variance, i.e., variance about the current population mean. Our model deals with reduced variance, and should therefore be more relevant to field studies. We show that reduced variance converges faster, which implies that populations are more likely to be at equilibrium with respect to reduced than unreduced variance. To summarize the effect of migration on genetic population structure, we introduce a new parameter, the effective migration rate. Unlike most population structure statistics, it does not confound the effects of mobility and population size, and it should therefore be useful for comparisons between populations. Finally, we show that the difference between geographic variation of newborn and adult allele frequencies contains information about both effective population size and effective migration rate.

Page Thumbnails

  • Thumbnail: Page 
1312
    1312
  • Thumbnail: Page 
1313
    1313
  • Thumbnail: Page 
1314
    1314
  • Thumbnail: Page 
1315
    1315
  • Thumbnail: Page 
1316
    1316
  • Thumbnail: Page 
1317
    1317
  • Thumbnail: Page 
1318
    1318
  • Thumbnail: Page 
1319
    1319
  • Thumbnail: Page 
1320
    1320
  • Thumbnail: Page 
1321
    1321
  • Thumbnail: Page 
1322
    1322
  • Thumbnail: Page 
1323
    1323
  • Thumbnail: Page 
1324
    1324
  • Thumbnail: Page 
1325
    1325
  • Thumbnail: Page 
1326
    1326
  • Thumbnail: Page 
1327
    1327