Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Developmental Constraint in Cerion, with Comments of the Definition and Interpretation of Constraint in Evolution

Stephen Jay Gould
Evolution
Vol. 43, No. 3 (May, 1989), pp. 516-539
DOI: 10.2307/2409056
Stable URL: http://www.jstor.org/stable/2409056
Page Count: 24
  • Read Online (Free)
  • Download ($4.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A Developmental Constraint in Cerion, with Comments of the Definition and Interpretation of Constraint in Evolution
Preview not available

Abstract

Since orthodox evolutionary theory is functionalist, constraints attain their most important positive meaning as channels of change imposed by historical and formal determinants, rather than by immediate natural selection. Since ontogeny is the usual locus of expression for these determinants, developmental constraint is an appropriate, general term. A particular developmental constraint in Cerion, most variable of West Indian land snails, stands out for two reasons: 1) it is simply and inexorably defined as a consequence both of formal principles (coiling of tube about axis) and of historical contingencies in Cerion's invariant allometry of growth; 2) it is pervasive in its influence, underlying major patterns of variation in every Cerion study I have ever undertaken. I refer to this pattern as the "jigsaw constraint." When whorls are large and final size is limited, adult shells must grow fewer whorls. In Cerion, this obvious fact is promoted from trivial to important because complex allometries impose a substantial set of further consequences for form upon this basic trade-off of whorl size and whorl number. I show that this complex of consequences dominates patterns of natural variation in Cerion at all levels (among shells within samples, between samples in the geographic variation of single species, and between species in multitaxon faunas). It also sets patterns of hybridization between taxa. This paper is primarily a compendium of such examples. It is designed to illustrate the importance of this constraint by the fundamental criterion of relative frequency.

Page Thumbnails

  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539