Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Multispecies Approach to the Analysis of Gene Flow in Marine Shore Fishes

Robin S. Waples
Evolution
Vol. 41, No. 2 (Mar., 1987), pp. 385-400
DOI: 10.2307/2409146
Stable URL: http://www.jstor.org/stable/2409146
Page Count: 16
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Multispecies Approach to the Analysis of Gene Flow in Marine Shore Fishes
Preview not available

Abstract

Ten species of marine shore fishes with a wide range of life-history strategies were collected from four areas in southern California, U.S.A., and Baja California, Mexico, and examined for patterns of genetic differentiation. Multilocus D and FST values (based on 32-42 presumptive gene loci in each species) were both negatively correlated with estimated dispersal capability. These results were robust to variations in the number and type of loci used in the analysis and are compatible with the hypothesis that levels of genetic differentiation in these shore fishes are determined primarily by gene flow and genetic drift. There is no a priori reason to expect the observed correlation to result from natural selection or historical factors. The findings thus suggest that populations of these shore fishes are in at least a quasi-equilibrium with respect to migration, mutation, and genetic drift. Present data were also used to compare estimates of mNe obtained by three different methods. Estimates based on FST values calculated by the methods of Nei and Chesser (FST(N)) and Weir and Cockerham (FST(W)) were highly correlated, but FST(N) ≤ FST(W) for every species, leading to generally higher mNe estimates for Nei and Chesser's method. Estimates of mNe based on the frequency of private alleles (Slatkin, 1985a) were not as strongly correlated with dispersal capability as were FST and D values. A low incidence of private alleles in many species may be responsible for this relatively weak correlation and may limit the general usefulness of Slatkin's method. In spite of their sensitivity to natural selection, FST and D may be better indicators of relative gene flow levels for high gene flow species.

Page Thumbnails

  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400