Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

The Evolution of Form and Function: Morphology and Locomotor Performance in West Indian Anolis Lizards

Jonathan B. Losos
Evolution
Vol. 44, No. 5 (Aug., 1990), pp. 1189-1203
DOI: 10.2307/2409282
Stable URL: http://www.jstor.org/stable/2409282
Page Count: 15
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Evolution of Form and Function: Morphology and Locomotor Performance in West Indian Anolis Lizards
Preview not available

Abstract

I tested biomechanical predictions that morphological proportions (snout-vent length, forelimb length, hindlimb length, tail length, and mass) and maximal sprinting and jumping ability have evolved concordantly among 15 species of Anolis lizards from Jamaica and Puerto Rico. Based on a phylogenetic hypothesis for these species, the ancestor reconstruction and contrast approaches were used to test hypotheses that variables coevolved. Evolutionary change in all morphological and performance variables scales positively with evolution of body size (represented by snout-vent length); size evolution accounts for greater than 50% of the variance in sprinting and jumping evolution. With the effect of the evolution of body size removed, increases in hindlimb length are associated with increases in sprinting and jumping capability. When further variables are removed, evolution in forelimb and tail length exhibits a negative relationship with evolution of both performance measures. The success of the biomechanical predictions indicates that the assumption that evolution in other variables (e.g., muscle mass and composition) did not affect performance evolution is probably correct; evolution of the morphological variables accounts for approximately 80% of the evolutionary change in performance ability. In this case, however, such assumptions are clade-specific; extrapolation to taxa outside the clade is thus unwarranted. The results have implications concerning ecomorphological evolution. The observed relationship between forelimb and tail length and ecology probably is a spurious result of the correlation between these variables and hindlimb length. Further, because the evolution of jumping and sprinting ability are closely linked, the ability to adapt to certain microhabitats may be limited.

Page Thumbnails

  • Thumbnail: Page 
1189
    1189
  • Thumbnail: Page 
1190
    1190
  • Thumbnail: Page 
1191
    1191
  • Thumbnail: Page 
1192
    1192
  • Thumbnail: Page 
1193
    1193
  • Thumbnail: Page 
1194
    1194
  • Thumbnail: Page 
1195
    1195
  • Thumbnail: Page 
1196
    1196
  • Thumbnail: Page 
1197
    1197
  • Thumbnail: Page 
1198
    1198
  • Thumbnail: Page 
1199
    1199
  • Thumbnail: Page 
1200
    1200
  • Thumbnail: Page 
1201
    1201
  • Thumbnail: Page 
1202
    1202
  • Thumbnail: Page 
1203
    1203
Part of Sustainability