Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Origin of Morphological Characters and the Biological Basis of Homology

G. P. Wagner
Evolution
Vol. 43, No. 6 (Sep., 1989), pp. 1157-1171
DOI: 10.2307/2409354
Stable URL: http://www.jstor.org/stable/2409354
Page Count: 15
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Origin of Morphological Characters and the Biological Basis of Homology
Preview not available

Abstract

A homolog is a part of the phenotype that is homologous to equivalent parts in other species. A biological homology concept is expected to explain three properties of homologs: 1) the conservation of those features that are used to define a homolog, 2) the individualization of the homolog with regard to the rest of the body, and 3) the uniqueness of homologs, i.e., their specificity for monophyletic groups. The main obstacle to describing a mechanistic basis for homology is the variability of the developmental pathways of undoubtedly homologous characters. However, not all aspects of the developmental pathway are of equal importance. The only organizational features of the developmental system that matter are those that have been historically acquired and cause developmental constraints on the further evolutionary modification of the characters. Two main factors contribute to historically acquired developmental constraints: generative rules of pattern formation and ontogenetic networks. In particular, hierarchical and cyclical inductive networks have the required properties to explain homology. How common such networks are is an open empirical question. The development and variation of pectoral fin hooks in blenniid fishes is presented as a model for the study of a simple ontogenetic network.

Page Thumbnails

  • Thumbnail: Page 
1157
    1157
  • Thumbnail: Page 
1158
    1158
  • Thumbnail: Page 
1159
    1159
  • Thumbnail: Page 
1160
    1160
  • Thumbnail: Page 
1161
    1161
  • Thumbnail: Page 
1162
    1162
  • Thumbnail: Page 
1163
    1163
  • Thumbnail: Page 
1164
    1164
  • Thumbnail: Page 
1165
    1165
  • Thumbnail: Page 
1166
    1166
  • Thumbnail: Page 
1167
    1167
  • Thumbnail: Page 
1168
    1168
  • Thumbnail: Page 
1169
    1169
  • Thumbnail: Page 
1170
    1170
  • Thumbnail: Page 
1171
    1171