Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Gene Trees and Organismal Histories: A Phylogenetic Approach to Population Biology

John C. Avise
Evolution
Vol. 43, No. 6 (Sep., 1989), pp. 1192-1208
DOI: 10.2307/2409356
Stable URL: http://www.jstor.org/stable/2409356
Page Count: 17
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Gene Trees and Organismal Histories: A Phylogenetic Approach to Population Biology
Preview not available

Abstract

A "gene tree" is the phylogeny of alleles or haplotypes for any specified stretch of DNA. Gene trees are components of population trees or species trees; their analysis entails a shift in perspective from many of the familiar models and concepts of population genetics, which typically deal with frequencies of phylogenetically unordered alleles. Molecular surveys of haplotype diversity in mitochondrial DNA (mtDNA) have provided the first extensive empirical data suitable for estimation of gene trees on a microevolutionary (intraspecific) scale. The relationship between phylogeny and geographic distribution constitutes the phylogeographic pattern for any species. Observed phylogeographic trees can be interpreted in terms of historical demography by comparison to predictions derived from models of gene lineage sorting, such as inbreeding theory and branching-process theory. Results of such analyses for more than 20 vertebrate species strongly suggest that the demographies of populations have been remarkably dynamic and unsettled over space and recent evolutionary time. This conclusion is consistent with ecological observations documenting dramatic population-size fluctuations and range shifts in many contemporary species. By adding an historical perspective to population biology, the gene-lineage approach can help forge links between the disciplines of phylogenetic systematics (and macroevolutionary study) and population genetics (microevolution). Preliminary extensions of the "gene tree" methodology to haplotypes of nuclear genes (such as Adh in Drosophila melanogaster) demonstrate that the phylogenetic perspective can also help to illuminate molecular-genetic processes (such as recombination or gene conversion), as well as contribute to knowledge of the origin, age, and molecular basis of particular adaptations.

Page Thumbnails

  • Thumbnail: Page 
1192
    1192
  • Thumbnail: Page 
1193
    1193
  • Thumbnail: Page 
1194
    1194
  • Thumbnail: Page 
1195
    1195
  • Thumbnail: Page 
1196
    1196
  • Thumbnail: Page 
1197
    1197
  • Thumbnail: Page 
1198
    1198
  • Thumbnail: Page 
1199
    1199
  • Thumbnail: Page 
1200
    1200
  • Thumbnail: Page 
1201
    1201
  • Thumbnail: Page 
1202
    1202
  • Thumbnail: Page 
1203
    1203
  • Thumbnail: Page 
1204
    1204
  • Thumbnail: Page 
1205
    1205
  • Thumbnail: Page 
1206
    1206
  • Thumbnail: Page 
1207
    1207
  • Thumbnail: Page 
1208
    1208